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Stereodivergent synthesis of both (2S)- and (2R)-1-monoricinolein
derivatives by lipase-catalyzed hydrolysis or transesterification
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Abstract—The preparation of both (2S)- and (2R)-1-monoricinolein derivatives has been developed to synthesize ferroelectric liquid crys-
tals. Lipase-catalyzed hydrolysis of 2-protected-1,3-diricinoleins provided (2S)-1-monoricinolein derivatives with high diastereoselectiv-
ities, while transesterification of 2-protected glycerols with vinyl recinoleate gave (2R)-1-monoricinolein counterparts in good yields with
high diastereoselectivities.
� 2007 Elsevier Ltd. All rights reserved.
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Figure 1. Ferroelectric liquid crystal compounds.
1. Introduction

Ferroelectric liquid crystals, which have an asymmetric
structure and show a smectic phase, are possible to be uti-
lized as an indicator device possessing a high-speed switch-
ing character and a memory function. In general, the
characteristic structure contains an alkyl chain, a flexible
acyclic structure at both ends of a rigid skeletal structure
(core part). It is also necessary to have an asymmetric
structure for ferroelectricity, namely spontaneous polariza-
tion (Fig. 1).1

In order to prepare ferroelectric liquid crystals, we first
planned to prepare 1-monoricinolein as a chiral part
including asymmetric carbons using lipase-catalyzed
hydrolysis2 of triricinolein obtained by purification of cas-
tor oil, which is commercially available and consists of
approximately 90% ricinoleate (12-hydroxy-cis-octadece-
noic) acid esters with a hydroxy group and a double bond
as the dominant constitutive fatty acid. Castor oil is sapon-
ified in industry for the preparation of ricinoleic acid. The
core part with a rigid skeletal structure can be introduced
at the hydroxy group. However, the lipase-catalyzed
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hydrolysis of triricinolein to monoricinolein gave an unde-
sired regioisomer 2-monoricinolein. We next examined the
lipase-catalyzed hydrolysis of 1,3-diricinolein prepared
from glycerol with ricinoleic acid. Herein, we report a dia-
stereoselective preparation of 1-monoricinolein derivatives
by lipase-catalyzed hydrolysis of 1,3-diricinolein deriva-
tives and lipase-catalyzed transesterification of 2-protected
glycerols with vinyl ricinoleate as an acyl donor.
2. Results and discussion

We examined the lipase-catalyzed hydrolysis of 1,3-diricin-
olein 1a, which was prepared from glycerol with ricinoleic
acid, in THF–phosphate buffer at room temperature. Table
1 summarizes the results. When the lipase PS-catalyzed
hydrolysis was carried out for 20 min, the desired 1-mono-
ricinolein 2a was obtained in 26% yield with 28% de (entry
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Table 1. Lipase-catalyzed hydrolysis of 1

OH
R1 =

1a: R2 = H
1b: R2 = BOM (BnOCH 2)
1c: R2 = MOM (MeOCH2)

(2R)-2 (2S)-2

2a: R2 = H
2b: R2 = BOM
2c: R2 = MOM

+

OH

OCOR1

OR2

OCOR1

OCOR1

OR2
Lipase

THF-phosphate buffer, rt

OH

OCOR1

OR2

Entry Lipase R2 Time
(min)

Yielda

(%)
(2R)-2:(2S)-2b,c de

1 PS H 20 26 36:64 28
2 PS H 30 36 22:78 56
3 PS H 40 55 47:53 6
4 PS BOM 10 24 12:88 76
5 PS BOM 20 40 5:95 90
6 PS BOM 30 35 5:95 90
7 AK BOM 30 14 15:85 70
8 PS MOM 25 32 (51)d 3:97 94
9 PS MOM 35 8 6:94 88

a Isolated yield.
b Diastereomeric excesses were determined by HPLC analysis using the

chiral stationary phase column, Chiralcel-OD after transformation of 2

into its di or tribenzoate ester.
c Configurations of product 2a and 2c were assigned by analogy.
d Yield in the parenthesis is based on the recovered 1,3-direcinolein

derivative 1c.

Table 3. Lipase-catalyzed transesterification of 3c with vinyl ricinoleate 5a

OH
R =

Lipase

MeCN, 50 °C, time

5 (2R)-2d (2S)-2d

+

3c

OCOR +

OH

OH

OBn

OH

OCOR

OBn

OH

OCOR

OBn

Entry Lipase Time (h) Yieldb (%) (2R)-2d:(2S)-2dc de

1 PPL 3.5 15 80:20 60
2 PS 3.5 29 88:12 76
3 AK 3.5 49 88:12 76
4 AK 6.0 58 96:4 92
5 AK 12.0 64 98:2 96
6 AK 18.0 65 96:4 92
7 AK 24.0 38 81:19 62

a 5 (1.0 equiv) in entries 1–3. 5 (2.0 equiv) in entries 4–7.
b Isolated yield.
c Diastereomeric excesses were determined by the HPLC analysis using the

chiral stationary phase column, Chiralcel-OD after transformation of 2d

into its dibenzoate ester.

916 I. Hachiya et al. / Tetrahedron: Asymmetry 18 (2007) 915–918
1).3 When the hydrolysis was conducted for 30 min, a mod-
erate 56% de was obtained (entry 2). As the reaction times
increased, the de of 2a decreased presumably due to com-
peting acyl migration (entries 1–3). To prevent the acyl
migration of 1-monoricinolein 2a, 2-protected-1,3-diricino-
lein derivatives 1b and 1c, which were prepared from 2-pro-
Table 2. Lipase-catalyzed transesterification of 2-protected glycerol derivative

R1 =

Lipa

solvent,

4

+

3a:  R2 = BOM
3b:  R2 = MOM
3c:  R2 = Bn

(1.0 equiv)

OCOR1

OCOR1

OCOR1

OH

OH

OR2

Entry Lipase R2 Solvent

1 PPL BOM MeCN
2 AYS BOM MeCN
3 CCL BOM MeCN
4 Novozym 435 BOM MeCN
5 AK BOM EtCN
6 PPL BOM EtCN
7 PPL BOM PrCN
8 PPL BOM MeCN:THF (2:1)
9 PPL BOM MeCN:tBuOMe (2:1)

10 PPL BOM MeCN:DME (2:1)
11 PPL MOM MeCN
12 PPL Bn MeCN

a Isolated yield.
b Diastereomeric excesses were determined by the HPLC analysis using the chir

dibenzoate ester.
c Product 2d configuration was assigned by analogy.
tected glycerols4 with ricinoleic acid, were used as starting
materials. When the lipase PS-catalyzed hydrolysis of 1b
was carried out, the des of 2b increased (entries 4–6). The
use of lipase AK, which has been found to be the most
effective lipase in the hydrolysis of triricinolein to
(2R)-2,3-diricinolein,5 gave 2b in low yield with moderate
de (entry 7). The highest 94% de was obtained, when the
hydrolysis of 1c was conducted for 25 min (entry 8).6

We next examined the lipase-catalyzed transesterification
of 2-protected glycerol 3 with triricinolein 4 as an acyl
donor. Table 2 summarizes the results. Among the lipases
s 3 with triricinolein 4

OH

se

 rt, time

(2R)-2 (2S)-2

+

2b:  R2 = BOM
2c:  R2 = MOM
2d:  R2 = Bn

OH

OCOR1

OR2

OH

OCOR1

OR2

Time (h) Yield (%)a (2R)-2:(2S)-2b de

3.5 22 85:15 70
3.5 Trace ND

19.0 Trace ND
3.5 43 50:50 0
6.5 3 80:20 60
3.5 13 67:33 34
3.5 3 86:14 72
3.5 3 87:13 74
3.5 31 80:20 60
3.5 4 82:18 64
3.5 32 85:15 70
3.5 10 85:15c 70

al stationary phase column, Chiralcel-OD after transformation of 2 into its
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Scheme 1. Determination of product 2b configuration.
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Scheme 2. Preparation of 1,3-acyl glycerol derivative 9.
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tested in transesterification of 3a4 with 4, lipase PPL was
found to be the most effective (entries 1–5). Regarding
the solvent, acetonitrile (MeCN) gave 2b in better yields
with good diastereomeric excesses (entries 1, 6–10). The
effect of a substituent on the 2-protected glycerols was
investigated.7 The desired products 2b, 2c, and 2d were
obtained with similar des (entries 1, 11 and 12). In an effort
to improve both the yield and de, vinyl ricinoleate 58 was
used as an acyl donor. Table 3 summarizes the results.
Among the lipases tested, lipase AK gave 2d in good yields
with good des (entries 1–3). The lipase AK-catalyzed
transesterifications were carried out for several reaction
times. The desired product 2d was obtained in high yields
with des 6.0, 12.0 and 18.0 h, respectively (entries 4–6).9

The absolute configuration of 2b was determined by com-
paring the retention time of (2R)-7b, which was trans-
formed from 1-monobenzoyl glycerol (2R)-6,10 prepared
according to the literature method as shown in Scheme 1,
in the HPLC analysis. The result indicated that the major
diastereomer of 1-monoricinolein derivative 2b prepared
by lipase PS-catalyzed hydrolysis of 1b had an (S)-configu-
ration.11 On the other hand, the examination into the
retention time in HPLC indicated that the major diastereo-
mer of 2b prepared by lipase PPL-catalyzed transesterifica-
tion of 3a with 4 had an (R)-configuration.
The 1,3-diacyl glycerol derivative 9 was synthesized using
the general condensation of the 1-monoricinolein deriva-
tive (2S)-2c (94% de) with 4-(4-hexyloxyphenyl)benzoic
acid 10 as a rigid skeletal structure as shown in Scheme
2.12 A preliminary result from differential scanning calo-
rimetry (DSC) of 1,3-diacyl glycerol derivative 9 showed
a liquid crystal phase from �20 to 75 �C.
3. Conclusion

In conclusion, we have demonstrated the preparation of
both (2S)- and (2R)-1-monoricinolein derivatives by
lipase-catalyzed hydrolysis of 2-protected-1,3-diricinolein
derivatives or transesterification of 2-protected glycerols
with vinyl ricinoleate as an acyl donor, respectively. 1,3-
Diacyl glycerol derivative 9 was prepared from 1-monori-
cinolein (2S)-2c and showed a liquid crystal phase.
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